An Empirical Evaluation of O(1) Steepest Descent for NK-Landscapes
نویسندگان
چکیده
New methods make it possible to do approximate steepest descent in O(1) time per move for k-bounded pseudo-Boolean functions using stochastic local search. It is also possible to use the average fitness over the Hamming distance 2 neighborhood as a surrogate fitness function and still retain the O(1) time per move. These are average complexity results. In light of these new results, we examine three factors that can influence both the computational cost and the effectiveness of stochastic local search: 1) Fitness function: f(x) or a surrogate; 2) Local optimum escape method: hard random or soft restarts; 3) Descent strategy: next or steepest. We empirically assess these factors in a study of local search for solving NK-landscape problems.
منابع مشابه
Constant time Steepest Ascent Local Search with Statistical Lookahead for NK-Landscapes
A modified form of steepest ascent local search is proposed that displays an average complexity of O(1) time per move for NKLandscape problems. The algorithm uses a Walsh decomposition to identify improving moves. In addition, it is possible to compute a Hamming distance 2 statistical lookahead: if x is the current solution and y is a neighbor of x, it is possible to compute the average evaluat...
متن کاملA Free Line Search Steepest Descent Method for Solving Unconstrained Optimization Problems
In this paper, we solve unconstrained optimization problem using a free line search steepest descent method. First, we propose a double parameter scaled quasi Newton formula for calculating an approximation of the Hessian matrix. The approximation obtained from this formula is a positive definite matrix that is satisfied in the standard secant relation. We also show that the largest eigen value...
متن کاملHybrid steepest-descent method with sequential and functional errors in Banach space
Let $X$ be a reflexive Banach space, $T:Xto X$ be a nonexpansive mapping with $C=Fix(T)neqemptyset$ and $F:Xto X$ be $delta$-strongly accretive and $lambda$- strictly pseudocotractive with $delta+lambda>1$. In this paper, we present modified hybrid steepest-descent methods, involving sequential errors and functional errors with functions admitting a center, which generate convergent sequences ...
متن کاملOn the Complexity of Steepest Descent, Newton's and Regularized Newton's Methods for Nonconvex Unconstrained Optimization Problems
It is shown that the steepest descent and Newton’s method for unconstrained nonconvex optimization under standard assumptions may be both require a number of iterations and function evaluations arbitrarily close to O(ǫ) to drive the norm of the gradient below ǫ. This shows that the upper bound of O(ǫ) evaluations known for the steepest descent is tight, and that Newton’s method may be as slow a...
متن کاملResidual norm steepest descent based iterative algorithms for Sylvester tensor equations
Consider the following consistent Sylvester tensor equation[mathscr{X}times_1 A +mathscr{X}times_2 B+mathscr{X}times_3 C=mathscr{D},]where the matrices $A,B, C$ and the tensor $mathscr{D}$ are given and $mathscr{X}$ is the unknown tensor. The current paper concerns with examining a simple and neat framework for accelerating the speed of convergence of the gradient-based iterative algorithm and ...
متن کامل